Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.10.536311

ABSTRACT

Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgAs), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, the evaluation of intranasal vaccine efficacy is based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgAs induced by intranasal vaccines, we developed 99 monoclonal IgAs from nasal mucosa and 114 monoclonal IgAs or IgGs from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgAs exhibited shared origins and both common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking and SARS-CoV-2 virus neutralization of monomeric and multimeric IgA pairs recognizing different epitopes showed that even nonneutralizing monomeric IgA, which represents 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. Our investigation is the first to demonstrate the function of nasal IgAs at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of virus infection.


Subject(s)
Coronavirus Infections , Tumor Virus Infections , COVID-19
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2676422.v1

ABSTRACT

It has been revealed that SARS-CoV-2 can be efficiently isolated from clinical specimens such as nasal/nasopharyngeal swabs or saliva in cultured cells. In this study, we examined the efficiency of viral isolation including SARS-CoV-2 mutant strains between nasal/nasopharyngeal swab or saliva specimens. Furthermore, we also examined the comparison of viral isolation rates by sample species using simulated specimens for COVID-19. As a result, it was found that the isolation efficiency of SARS-CoV-2 in the saliva specimens was significantly lower than that in the nasal/nasopharyngeal swab specimens. In order to determine which component of saliva is responsible for the lower isolation rate of saliva specimens, we tested the abilities of lactoferrin, amylase, cathelicidin, and mucin, which are considered to be abundant in saliva, to inhibit the infection of SARS-CoV-2 pseudotyped viruses (SARS-CoV-2pv). Lactoferrin and amylase were found to inhibit SARS-CoV-2pv infection. In conclusion, even if the same number of viral genome copies was detected by the real-time RT-PCR test, infection of SARS-CoV-2 present in saliva is thought to be inhibited by inhibitory factors such as lactoferrin and amylase, compared to nasal/nasopharyngeal swab specimens.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.27.530346

ABSTRACT

Breakthrough infection (BI) after coronavirus disease 2019 (COVID-19) vaccination has exploded owing to the emergence of various SARS-CoV-2 variants and has become a major problem at present. In this study, we analyzed the epidemiological information and possession status of neutralizing antibodies in patients with BI using SARS-CoV-2 pseudotyped viruses (SARS-CoV-2pv). Analysis of 44 specimens diagnosed with COVID-19 after two or more vaccinations showed high inhibition of infection by 90% or more against the Wuhan strain and the Alpha and Delta variants of pseudotyped viruses in 40 specimens. In contrast, almost no neutralizing activity was observed against the Omicron BA.1 variant. Many cases without neutralizing activity or BI were immunosuppressed individuals. The results of this study show that BI occurs even when there are sufficient neutralizing antibodies in the blood due to exposure to close contacts at the time of infection. Thus, even after vaccination, sufficient precautions must be taken to prevent infection.


Subject(s)
COVID-19 , Breakthrough Pain
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.16.528881

ABSTRACT

It has been revealed that SARS-CoV-2 can be efficiently isolated from clinical specimens such as nasal/nasopharyngeal swabs or saliva in cultured cells. In this study, we examined the efficiency of viral isolation including SARS-CoV-2 mutant strains between nasal/nasopharyngeal swab or saliva specimens. Furthermore, we also examined the comparison of viral isolation rates by sample species using simulated specimens for COVID-19. As a result, it was found that the isolation efficiency of SARS-CoV-2 in the saliva specimens was significantly lower than that in the nasal/nasopharyngeal swab specimens. In order to determine which component of saliva is responsible for the lower isolation rate of saliva specimens, we tested the abilities of lactoferrin, amylase, cathelicidin, and mucin, which are considered to be abundant in saliva, to inhibit the infection of SARS-CoV-2 pseudotyped viruses (SARS-CoV-2pv). Lactoferrin and amylase were found to inhibit SARS-CoV-2pv infection. In conclusion, even if the same number of viral genome copies was detected by the real-time RT-PCR test, infection of SARS-CoV-2 present in saliva is thought to be inhibited by inhibitory factors such as lactoferrin and amylase, compared to nasal/nasopharyngeal swab specimens.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL